Расчёт ньютоновских траекторий движения.
В методе молекулярной динамики рассчитываются классические (ньютоновские) траектории движения атомов макромолекулы в силовом поле эмпирического атом-атомного потенциала, т. е. моделируется детальная микроскопическая картина внутренней тепловой подвижности макромолекулы в субнаносекундных интервалах времен. Основу метода составляет численное решение классических уравнений Ньютона для системы взаимодействующих частиц:
где - радиус-вектор i-го атома, - его масса, суммарная сила, действующая на i-ый атом со стороны остальных частиц:
Здесь: -потенциальная энергия, зависящая от взаимного расположения всех атомов; n - число атомов.
Задав координаты и скорости всех частиц в начальный момент времени, числено решают уравнения движения, вычисляя на каждом шаге все силы и новые координаты и скорости частиц. Температура определяется как средняя кинетическая энергия, приходящаяся на одну степень свободы системы:
Здесь N - полное число степеней свободы молекулы, - постоянная Больцмана. В случае изолированной системы N=3n-6, поскольку сохраняется ее полный импульс и момент импульса. Кроме того, в этом случае сохраняется полная энергия системы, а температура получается усреднением ее мгновенных значений T(t) по некоторому интервалу времени.
Потенциальная энергия молекулы задается в виде:
++++++
где слагаемые отвечают следующим типам взаимодействий:
- химическим связям; - валентным углам; - торсионным углам; - плоским группам; - ван-дер-ваальсовым контактам; - электростатике; - водородным связям. Основные типы структурных взаимодействий представлены на рисунке:
Указанные слагаемые имеют различный функциональный вид. Валентные длины поддерживаются за счет потенциала:
где суммирование проводится по всем химическим связям, - обозначение для равновесных валентных длин, r - текущие длины связей, - соответствующие силовые константы (посмотреть валентные колебания). Уравнение, описывающее потенциал валентных связей следует из закона Гука. Это уравнение параболы:
Валентные углы задаются потенциалами
где - равновесные значения углов, - их текущие значения, - силовые константы (посмотреть колебания валентного угла). Уравнение, описывающее потенциал валентных связей также следует из закона Гука. Это уравнение параболы:
Энергия торсионных взаимодействий и потенциалов, отвечающих плоским группам, записываются в одинаковом виде:
где n - кратность торсионного барьера, - сдвиг фазы, константы определяют высоты потенциальных барьеров двугранных углов (посмотреть вращение торсионного угла). Энергия торсионных углов может быть задана с помощью простой периодической функции, как это показано на рисунке:
Ван-дер-ваальсовые взаимодействия атомов, разделенных тремя и более валентными связями описываются с помощью потенциалов Леннард-Джонса:
Параметры потенциала A и B зависят от типов атомов i и j, участвующих во взаимодействии; - расстояние между этими атомами. Аналитический вид такого потенциала представлен на рисунке:
Очевидно, что вид потенциала зависит от свойств атомов, участвующих в образовании Ван-дер-Ваальсовых связей. Ниже, на рисунке представлен вид потенциала для разных пар атомов:
Электростатические взаимодействия задаются кулоновским потенциалом
где , - парциальные заряды на атомах, - диэлектрическая проницаемость среды.
Водородные связи возникают и исчезают в процессе движения атомов между теми из них, которые имеют донорно-акцепторный статус. Функциональный вид потенциала водородной связи аналогичен потенциалу ван-дер-ваальсовым взаимодействий:
Существуют различные наборы параметров для потенциалов взаимодействий. Их значения определяются из учета различных типов экспериментальных данных (спектральные, калориметрические, кристаллографические) и квантовомеханических расчетов.
Литература: