Справочник "Биофизики России"
Найдено: 3886.
<< [821-840] [841-860] [861-880] [881-900] [901-920] [921-940] [941-960] [961-980] [981-1000] [1001-1020] [1021-1040] >>
- Якушевич Л. В. Физические подходы в исследованиях ДНК Математика. Компьютер. Образование, 2001, вып.8
В данной работе обсуждается взаимодействие физики и науки о ДНК. Мы показываем, что такое взаимодействие приводит к появлению новых интересных физических моделей с оригинальными гамильтонианами, динамическими уравнениями и решениями.
- Aksyonov S. I., et al Effects of ELF-EMF treatment on wheat seeds at different stages of germination and possible mechanisms of their origin // Electro- And Magnetobiology, 2001, 20(2) 231-253
- Annan J. D. Modelling under uncertainty: Monte Carlo methods for temporally varying parameters // Ecol. Modelling, 2001, v. 136, p. 297 - 302.
- Antal T. K., Venediktov P. S., Matorin D. N., Ostrowska M., Wozniak B., Rubin A. B. Measurement of phytoplankton photosynthesis rate using a Pump-and-probe fluorometer Oceanologia. 2001. V.43. N 3. P. 291-313
- Arditi R., Tyutunov Y., Morgulis A., Govorukhin V., Senina I. Directed movement of predators and the emergence of density-dependence in predator-prey models // J. Theor. Biol., 2001, v. 59, p. 207 - 221.
- Beardall J., Berman T., Heraud P., et al. A comparison of methods for detection of phosphate limitation in microalgae // Aquat. Sci., 2001, v. 63, p. 107 - 121.
- Beardall J., Young E., Roberts S. Approaches for determining phytoplankton nutrient limitation // Aquat. Sci., 2001, v. 63, p. 44 - 69.
- Benz J., Hoch R., Legovic T. ECOBAS - modelling and documentation // Ecol. Modelling, 2001, v. 138, p. 3 - 15.
- Berezovskaya F., Karev G. P., Arditi R. Parametric analysis of the ratio-dependent predator-prey model // J. Math. Biol., 2001, v. 43, p. 221 - 246.
- Buffoni G., Di Cola G., Garaventa L. The local dynamics of a tri-trophic system // Ecol. Modelling, 2001, v. 138, p. 31 - 39.
- Bulychev A. A., Polezhaev A. A., Zykov S. V., et al. Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena // J. Theor. Biol., 2001, v. 212, p. 275 - 294.
- Bulychev A. A., Polezhaev A. A., Zykov S. V., Pljusnina T. Yu., Riznichenko G. Yu., Rubin A. B., Janto W., Zykov V. S., Muller S. C. Light-triggered pH Banding Profile in Chara Cells Revealed with a Scanning pH Microprobe and its Relation to Self-Organization Phenomena // J. theor. Biol., 2001, 212, pp. 275-294
When exposed to light, Characean cells develop a pattern of alternating alkaline and acid bands along the cell length. The bands were identied with a tip-sensitive antimony pH microelectrode positioned near one end of Chara internode at a distance of 50-100 lm from the cell wall. The stage with Chara cell was moved along its longitudinal axis at a computercontrolled speed (100 or 200 microm s-1) relative to the pH probe over a distance of 50 mm. Under sufficient uniform illumination of the cell (from 100 to 2.5Wm-2), the homogeneous pH distribution becomes unstable and a banding pattern is formed, the spatial scale of which decreases with the light intensity. If the cell is locally illuminated, bands are formed only in the region of illumination. It is shown that the inhibition of cyclosis by cytochalasin B leads to the disappearance of the banding pattern. The addition of ammonium (weak base) inhibited the banding pattern, whereas acetate (weak acid) alleviated the inhibitory eject of ammonium and restored the pH banding. A model explaining the observed phenomena is formulated in terms of proton concentration outside and bicarbonate concentration inside the cell. It contains two diffusion equations for the corresponding ions with nonlinear boundary conditions determined by ion transport processes across the cell membrane. The model qualitatively explains most of the experimental observations. It describes the dependence of the pattern characteristics on the light intensity and reveals the role of cyclosis in this phenomenon.
- Calvo M. P., De Frutos J., Novo J. Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations // Appl. Numer. Math., 2001, v. 37, p. 535 - 549.
- Carpenter S., Walker B., Anderies J. M., Abel N. From metaphor to measurement: resilience of what to what? // Ecosystems, 2001, v. 4, p. 765 - 781.
- Chen X., Cohen J. E. Global stability, local stability and permanence in model food webs // J. Theor. Biol., 2001, v. 212, p. 223 - 235.
- Dodds P. S., Rothman D. H., Weitz J. S. Re-examination of the "3/4-law" of metabolism // J. Theor. Biol., 2001, v. 209, p. 9 - 27.
- Dreyer O., Puzio R. Allometric scaling in animals and plants // J. Math. Biol., 2001, v. 43, p. 144 - 156.
- Drossel B., Higgs P. G., McKane A. J. The influence of predator-prey population dynamics on the long-term evolution of food web structure // J. Theor. Biol., 2001, v. 208, p. 91 - 107.
- Ebert U., Arrayas M., Temme N., Sommeijer B., Huisman J. Critical conditions for phytoplankton blooms // Bull. Math. Biol., 2001, v. 63, p. 1095 - 1124.
- Engel R., Normand M., Horowitz J., Peleg M. A model of microbial contamination of a water reservoir // Bull. Math. Biol., 2001, v. 63, p. 1005 - 1023.
<< [821-840] [841-860] [861-880] [881-900] [901-920] [921-940] [941-960] [961-980] [981-1000] [1001-1020] [1021-1040] >>
Условные обозначения:
- научный журнал
- работа опубликована в трудах научной конференции