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A mathematical model of ion transport across the membrane via a carrier is explored. The
fundamental non-linearity of the model governs the possibility of pH changes in the near
membrane layer in the auto-oscillatory regime. It is shown that the impact of a weak varying
electric field may sharply change the character of the auto-oscillations and lead to the appearance
ofa quasichaotic regime. © 1997 Elsevier Science Ltd. All rights reserved.

It is well known that the rhythms of endogenous origin peculiar to biological systems or imposed
by the external conditions are of prime importance for the normal course of many vitally
important processes, Cessation of the rhythms or their phase shift may lead to disturbance of
biological functions. Some authors point to the special regulatory role ofbiological rhythms [1, 2].
A host of publications exists, describing the periodic oscillations in processes associated with
enzymatic catalysis [3], with respiratory activity [4] and with nerve impulse transmission [5].
Since the role of the cell membranes is not confined to barrier functions but makes a considerable
contribution to the regulatory processes of the cell, maintenance ofhomeostasis and the processes
of synthesis of proteins and genetic material, the search for periodic solutions in models of
membrane transport processes is an important task.

Earlier in [6, 7], to explain the effects of the impact ofweak low-frequency fields on biological
systems, we proposed models of ion transport across the membrane, each of which is character
ized by a definite type of non-linearity. It was shown thata non-linearly organized system of ion
transport may respond to weak periodic exposure by resonance enhancement of the variations in
the concentrations of ions [6], or by switching from one regime offunctioning to another [7]. This
paper is concerned with the response of the system of ion transfer, possessing auto-oscillatory
dynamics ofbehaviour.

Let us consider the case when both protons and potassium ions are transferred in accord with
the scheme (1), representing a minor modification of the schemes proposed by us in [6, 7].
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(Scheme 1)

The subscripts 1 and 2 at concentrations ofprotons H+ and potassium K+ions correspond to a
solution on the two sides of the membrane; vH('P) and vK('P) are the rates of inflow of protons H+
and potassium K+ ions into the sphere of reactions, depending on the potential gradient in the
near-membrane region; v~ ('P) and v~ ('P) are the rates of efflux at the other side of the membrane;
k+n (n = 1,3,5,7) are the attachment constants of the ions to the carrier and the breakdown of the
complex on one side of the membrane; k+n (n = 4,6) are the effective transfer constants of the
complex across the membrane and its breakdown on the other side.

As may be seen from the scheme, the system is open thanks to the diffusional processes in the
near-membrane region. In the system a feedback mechanism is realized, leading in certain
conditions to periodic fluctuations in the concentrations, which, depending on the parameters of
the process, may be damping or self-sustaining. Another feature of the non-linear organization of
the process is inhibition of transfer by secondary attachment of protons, promoting the onset of
bistability in the system.

In real conditions the concentration of the carrier is usually much lower than that of the
transferred ions, which accounts for the hierarchy of times in the system, i.e. the rate ofchange in
the concentration ofthe carrier T- and its complexes amounts in relation to the rate of turnover of
these molecules to a value much closer to zero than the rate ofchange in the concentration of ions
in relation to the rates of their circulation. For the carrier and its complexes, quasisteadiness
exists. The use of the Tikhonov theorem on the limiting transition allows one to transform the
system, originally consisting of six differential equations to a non-linear system of two differen
tial equations. Finally, having regard to the external action, the system assumes the form:

dx/d't = vx(IP)(1 + Asinon) - kxx - bxy/(l + x + xy + cy + ax2
) ,

dy/dr = v,.(IP)(l + Asinon) - xy/(l + x + xy + cy + ax2
) .

(1)

where x and yare, respectively, the dimensionless concentrations of protons and potassium ions,
vA'P) and ~\'('P) are the dimensionless rates of inflow of protons and potassium ions into the
reaction sphere, k., a, b, c are combinations of the rate constants of the interaction of ions with the
carrier and transfer of the complexes formed across the membrane, A is a dimensionless ampli
tude, and w is the dimensionless cyclic frequency of the external action. The value of the
amplitude indicates the proportion of the voltage of the intrinsic electric field in the near
membrane region in relation to the voltage of the external electric field.

Investigation of the system (1) in absence of exposure (A, co =0), using the Hopf bifurcation
theorem showed that for certain values of the parameters, the system has a solution in the form of
a limiting cycle. Analytical investigation and numerical integration gave four critical values ofthe
controlling parameter Vx' for which in the system bifurcational changes appear (Figs 1 and 2). The
region of onset of bifurcations is very narrow: changes in the parameter by ten thousandths leads
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Fig. J. Change in the structure of the phasic portrait of system (I) in the absence of external
action (A, w= 0) with change in the parameter of inflow of protons vx ' In the right corner, an
isolated portion reproduced on a larger scale. x and yare the concentrations of protons and
potassium ions in the near-membrane layer. At vx=0.5241, dying oscillations exist in the system,
the stable state is a focus (curve A); at vx=0.5242 Hopf bifurcation takes place. The stable
equilibrium regime gives way to stable auto-oscillations oflow amplitude (curve B), which, with
increase in vx ' slowly rises. At v, = 0.5245, the amplitude and the period of the natural oscillations

sharply grow (curve C), vx=0.5, kx=O.OI, a= 10, b= 1, c= J.
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to transitions from the regime of dying oscillations to limiting cycles ofdifferent amplitude and to
the appearance of two attractors.

Exposure of the bifurcational parameter Vx' depending on the potential gradient, to an external
periodic electric field, was studied both close to the point of bifurcation and in the intervals of
parameters far from bifurcation. With the electric field acting on the parameters of the rates of
inflow far from the points of bifurcation, the system retains stability over a wide range of
amplitudes and frequencies of exposure, i.e. the character of the intrinsic oscillations practically
does not change.

Close to the critical values of Vx' an external minor perturbation by the field characterized by
definite amplitude and frequency, alters the regime of functioning. Thus, for a lower critical value
of the parameter v, = 0.5241 corresponding to the stable state of the focus, a weak external action
will take the system from the regime of dying oscillations into the regime of auto-oscillations. If
the action occurs at the moment when the system is in the regime of auto-oscillations (for Vx close
to bifurcation), then in the system transitions are possible from oscillations of low amplitude to
those ofhigh amplitude (Fig. 3), i.e. passage from the cycle B to the cycle C in Fig. 1.

Close to the upper critical value Vx = 0.7065 in response to external weak periodic perturbation
in the system as a function of frequency several types of behaviour may also be realized. At
relatively high frequencies of the action the system, depending on the initial conditions, performs
oscillations either close to the stable focus (D in Fig. 2), or the solution tends to the limiting cycle
(F in Fig. 2). At certain critical (resonance) frequencies of action, the system, close to the stable
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Fig. 2. Existence of a multiplicity of solutions in the system (1) in the absence of an external action
(A, w = 0) with change in the initial conditions. x and yare the concentrations of protons and
potassium ions in the near-membrane layer. At vx=0.7014-Q.7067, in the system a stable focus (D),
an unstable (E) and stable (F) limiting cycles exist. Depending on the initial conditions, the solution
will tend either to the stable limiting cycle (F) or to the stable focus (D). At Vx > 0.7067, only the

stable focus remains in the system. vx=0.5, kx=O.Ol, a= 10, b= 1, C = 1.
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Fig. 3. Changes in the concentration of protons x (a) and potassium ions y (b) in the
near-membrane layer appearing in response to external periodic perturbation by a
weak electric field. At Vx = 0.5243 periodic transitions from low amplitude to high
amplitude oscillations appear in the system. Amplitude of external action A = 0.0003,

frequency w=0.004, vx=0.5, kx=O.Ol, a= 10, b= 1, c= 1.



Ion Transfer Across the Membrane on Exposure to Weak Magnetic Field

......---------------------x
Fig. 4. Changes in the concentration of protons x and potassium ions y in the near-membrane layer
in response to external periodic perturbation by a weak electric field. For an amplitude of the
external action A = 0.003 and critical frequency w = 0.0025 a quasichaotic regime appears. At other

frequencies, periodic oscillations take place, vx=0.7065, vl'=o.oi, k,= 10, a= 10, b= 1, c= 1.

957

focus, may be "thrown over" into the state of the limiting cycle. With fall in the frequency of the
external action to co = 0.0025 close to the limiting cycle (F in Fig. 2), a limiting set (Fig. 4, region
1) appears, reminding one in terminology [8] of the odd attractor since the phasic trajectories with
passage of time draw to this limiting set and entering the region occupied by it remain there
forever. In the attractor itself, movement is unstable. As well as the odd attractor at the frequency
of action considered, in the system there exists a limiting periodic trajectory (Fig. 4, curve 2).
Therefore, depending on the initial conditions, either periodic or quasichaotic oscillations may be
realized in the system.

The numerical investigations run show that for certain values of the parameters far from the
points of bifurcations, the system possesses a high degree of stability to weak electrical influences.
Then, as with the values of the parameters close to the bifurcation points, the actions of a field of
low amplitude and frequency produce considerable effects.
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