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Abstract—A study was made of the properties of a reaction—electrodiffusion system. A two-component
model was developed to describe how interacting charged particles diffuse near the membrane in
low-ionic-strength media for which the common assumption of electroneutrality is invalid. Analysis of this
model—constructed to take into account the presence a self-consistent field—shows that the latter contrib-
utes to the emergence of bistability, localized structures with highly heterogeneous spatial distributions of
charges, and spatially and temporally aperiodic modes,
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INTRODUCTION

Involvement of charged molecules in many
chemical and biological processes leads to the need to
examine the role of the so-called self-consistent field, or
electric field arising from interaction of moving charged
particles, in producing various dynamic modes.

Ions are essential for live organisms. Among
ionic processes in the cell, most important are the
generation of potential gradients across the membrane
and the movement of electric pulses. There are plant
species that form alternating zones of high and low
concentrations of some ion (in terms of nonlinear dy-
namics, such zones are known as dissipative struc-
tures). For example, acidic and alkaline regions alter-
nate over the surface of filamentous algae Nirella and
Chara [1-3]. They differ in the membrane potential
[4] and the potential of the adjacent layer [5]. These
potential variations are a source of additional electric
gradients along the membrane. To study the mecha-
nisms of such phenomena, it may be essential not
only to know how particular ion channels and mem-
brane carriers operate, but also to understand how the
dynamical system behaves as a whole or, in other
words, how the spatiotemporal organization of events
is affected by the presence of a self-consistent field.
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There are two approaches to describing electric
phenomena at and near the membrane [6]. One ap-
proach called the equivalent electric circuit technique
was employed in studies of nerve impulse conduction
[7] and of potential profiles in Chara cells [5, 8]. The
second approach is to use the electrodiffusion equa-
tions, as in studies of the effect of external electric
fields on chemical reactions in high-ionic-strength so-
lutions [9-13], for which the electroneutrality condi-
tion holds. This condition, if fulfilled, markedly sim-
plifies the analysis of problems. However, in biologi-
cal media, unlike chemical media, this is often not the
case. For example, departure from electroneutrality is
possible near cell membranes as a result of active ion
transport, the presence of the electric double layer,
and the presence of fixed charges on integral mem-
brane proteins.

The goal of this study was to demonstrate that
self-consistent field-related redistribution of mem-
brane charges and potential gradients gives rise to a
number of important biological effects in systems
with nonlinear chemical kinetics. We attained this
goal by solving reaction—electrodiffusion equations
for low-ionic-strength media where the common as-
sumption of electroneutrality is invalid.
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REACTION-ELECTRODIFFUSION MODEL

Formulating the Problem

Let us consider a single cell placed in a weak
electrolyte solution. The cell membrane is known to
carry an electric charge. Assume that its distribution
over the cell surface is uniform. To screen the cell
surface charge, electrolyte ions of opposite charge ac-
cumulate near the cell membrane [14]. The span of
this oppositely charged layer can be estimated: it is
the Debye radius (length). The Debye radius is usu-
ally much smaller than the cell diameter. Therefore, to
model the effects produced by ion movement along
the cell membrane, we can consider the latter as an in-
finite boundary carrying an electric charge. This as-
sumption allows us to go over to a one-dimensional
problem.

In the system of interest, all reactions altering
the concentrations of charged particles proceed on the
membrane surface. The electric double layer is sup-
posed to be in equilibrium with the rest of the electro-
lyte: the flux of ions leaving the layer by virtue of
their thermal motion equals the flux of ions arriving
from the bulk solution.

Mathematical Model

Let the system under study contain neutral parti-
cles along with charged ones. Charged particles may
be ions diffusing along the cell membrane and taking
part in various chemical reactions. Let the concentra-
tion of ions be much lower than that of neutral mole-
cules. In other words, we consider a low-ionic-
strength solution.

Variations in ion concentrations are described
by the reaction—electrodiffusion equations [13]. With
the concentrations of positive and negative ions desig-
nated ¢, and c,, respectively, the set of dimensionless
equations with one spatial variable (r) reads
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where 1 is time; flc,, ¢;) and g(c,, c,) are nonlinear
functions that describe the changes in ion concentra-
tions caused by chemical reactions at the membrane;
D, and D, are the diffusion coefficients for positive
and negative ions, respectively; B, and B, are their
mobilities in an electric field; v is the ratio of the char-
acteristic ion concentrations; and z is the valence ratio
of ions.

The equations describing changes in ion concen-

trations were solved for no-flux boundary conditions:
J|(0.1)=J|(I.'C)=O
J2(0,7)=J5(1,7)=0.

As the initial condition, we chose the steady-
state uniform distribution of ion concentrations, that
is, the solution to the algebraic set fic,,c,) =0 and
g(fl, Cz) = 0.

The boundary conditions for the Poisson equa-
tion were taken in the form

y(0,7)=y(l,7)=0, (2.2)

implying the absence of electric fields parallel to the
membrane surface.

(2.1)

ANALYSIS FOR SELF-SIMILARITY

As shown by Ortoleva and Schmidt [15], the
lower the ionic strength, the greater the effect of a
self-consistent field. To better understand the pattern-
ing in low-ionic-strength media, let us consider self-
similar solutions to the set of equations (1.1)—(1.3).
This approach allows us to take account of the qua-
dratic terms describing a self-consistent field without
the need to assume that the medium is electroneutral.

It is known that, if a set of partial differential
equations admits a self-similar solution, the degree of
that set can be reduced. For example, it is possible to
go over to a set of ordinary differential equations [16].
As such systems are characterized by self-similarity
[16], the solutions to the set of ordinary differential
equations will reflect the solutions to the original set,
provided that large time intervals are considered.

By self-similar solutions we mean the solutions
obtained by a generalization of the variable separation
technique [17, 18], according to which the solution of
the original equation is written as F(r, T) = ¢(1)h(E),
where the second multiplier depends only on some
combination &(r,T) of independent dimensionless
variables.
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Fig. 1. Modulated structures, as calculated in the
self-similar system (5.1)-(5.3) for D,/Dy=B,/B,=3,
P11 =0,pi3=14,p13=1,p3 =0.5,pyy = =24, py; = 2.85,
z=1,y=1,and x = 0.99.

b
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Fig. 2. Localized structures with high spatial variation in
charge density, as calculated in the self-similar sysiem
(5.1)«5.3) for D\/Dy=B,/B;=2.6, p;; =0, p;;=-25,
pi3=l,pn=05ppy=-24,prn=2852z=1,y=1,and
x = 1.035.
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Fig. 3. Phase portraits of the model describing the local
chemical dynamics (/) without and (2, 3) with regard for
the effect of a self-consistent electric field: (/) stable fo-
cus, (2) saddle, and (3) stable node. Parameters used in
calculations: a= 5, b=25, B, =001, B,=001, z=1,
y=l,and = L.

Let u(r, T) and v(r, T) be small deviations from
the values of ¢, and ¢, comresponding to the uniform
steady state (¢ and cj, respectively). Self-similar
variables exist in the system (1.1)~(1.3) if its “chemi-
cal” part (equations describing the chemical reac-
tions) contains only quadratic terms (that is, if linear
terms and terms of the third and higher orders in these
equations are negligibly small).

Expanding the right-side functions in powers of
the new variables 4 and v, and retaining only qua-
dratic terms, we obtain

du d%u du dy
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where constants p; are combinations of the sec-
ond-order rate constants of the “chemical™ part of the
system and of the parameters of its “electric™ part.
The p; can take on positive and negative values.

The self-similar solution will be sought in the
form
1 1
u(r.t)=;y.(§). v(r.t)=;y:(§).
(4)

r
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Functions y,, y,, and y; are the solution to the
following set of ordinary differential equations

" g ’ ’ ,
D,y +§')’1 +Byy; +
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Dayi 4235 ~Byyiy 43 +
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with the boundary conditions
Mlgisew =00 Yalgy, =0 6)

Note that primes indicate differentiation with re-
spect to the new independent variable &.
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Conditions (€) imply that we look for localized
structures. Far off the coordinate origin, ‘the system
remains in a spatially homogeneous steady state.

The solution can be continued into the range of
negative & values as an even function by setting sym-
metry conditions at § = 0:

a)’:' a_‘P{ .
=0, =0, i=1,2.
aﬁL_o 9r e

Although we confined ourselves to seeking only
self-similar solutions to the full model, this approach
allows us to understand some general rules of pattern
formation under the action of a self-consistent field in
reaction—electrodiffusion systems. Of course, in real
systems the roles of linear terms and terms of the third
and higher orders cannot be neglected. Expectedly,
their contribution would lead either to pattern stabili-
zation, or to significant deviation from self-similar so-
lutions. Still we suppose that real systems may have
initial conditions required for bringing into play sce-
narios close to self-similar ones.

Numerical analysis of the set of self-similar
equations (5.1)—(5.3) revealed a number of modes.
Described below are those that are analogous to the
modes found in the full model (1.1)—(1.3). Non-
monotonic structures develop in model (5.1)—(5.3)
from special initial conditions called the Cauchy data.
The amplitudes of the structural elements depend on
the self-similar variable E. With increasing &, the am-
plitude first passes through a maximum and then lev-
els off (Fig. 1).

Figure 2 shows more interesting solutions to
model (5.1)=(5.3): a localized structure with high spa-
tial variation in the charge distribution. Its size is
small compared with the spatial scale of the problem.
Beyond the region occupied by this structure, ions re-
main uniformly distributed.

RESULTS OF NUMERICAL EXPERIMENTS

Analysis of the full system in partial derivatives
(1.1)~(1.3) shows that the interplay between particle
transfer in an electric field and diffusion gives rise to
a variety of modes.

To have nonlinear terms in describing chemical
reactions, we chose equations of the Brusselator
model:

f(u,v)=a —(b+u+uy,
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Fig. 4. Structures with modulated amplitude, as calcu-
lated in the full system of partial differential equations
(1.1)<1.3) for a=S5, b=25, D, =107, D= 15107,
B,=0.1,8,=0.152z=1,y=1,and x =0.99.

Fig. 5. Localized structures with high spatial variation in
charge density, as calculated in the full system of partial
differential equations (1.1)=(1.3) fora=5.21, b=27.144,
D[ = IO". D] = 1-5'10—‘. Bl =0.03. Bg "—‘0.045. =1,
y=1l,and % = l.

Fig. 6. Step-like distribution of ion concentrations, as
calculated in the full system of partial differential equa-
tions (1.1)-(1.3) fora=5,b=25D,=D;= 1074, B, =
=B,=0.1,z=1,y=1,andx=1.

g(u,v)=bu—u?v.

Note that the Brusselator is expanded by incor-
porating the quadratic terms whereby the presence of
a self-consistent field is taken into consideration. In
the expanded model, more steady states are possible
than in the original one (Fig.3). Specifically, in
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addition to the stable focus (point / in Fig. 3) corre-
sponding to the initial steady state of the Brusselator,
two more equilibrium points emerge, that is, a saddle
and a stable node (points 2 and 3 in Fig.3). The
electroneutrality condition is satisfied only in state /.
Thus, taking into account the presence of a self-
consistent field, we find that the stable state in which
the condition of electroneutrality holds coexists with
the states in which the charge (negative in this model)
is not compensated for.

Let us examine the effect of a self-consistent
field on the model behavior for the parameter values
at which the system is Turing-stable. The initial con-
ditions will be small deviations from the electro-
neutral steady state. If the system is close to the Tu-
ring bifurcation, patterning is observed (Fig. 4). The
structural elements vary in amplitude (cf. Figs. 4 and
1) to the extent depending on the initial perturbation.
The latter appears to modulate the amplitudes of
structural elements. Therefore, the resulting distribu-
tions of ion concentrations and potentials in the sys-
tem are perturbation-dependent (forced). Given much
time, the structures slowly grow, then start to move,
after which the system’s dynamics becomes irregular.
For other parameter values, structures are formed that
do not depend (or depend only slightly) on the pertur-
bation characteristics and persist for a long time.

There is a parameter range where, despite its
proximity to the bifurcation point, no structures arise
in response to a perturbation; the perturbation is
damped, but sometimes not completely, leaving one
or more (depending on the perturbation type) small
segments (Fig. 5) where aperiodic oscillations of ion
concentrations are observed (cf. Figs. 5 and 2).

In yet another parameter range, a perturbation
applied to the system in the spatially homogeneous
steady state causes the redistribution of ions between
two stable states in the form of a “step.” In the state
corresponding to the stable focus of the model with-
out spatial terms, a wave train can arise that moves to
the step edge.

DISCUSSION

The model that we analyze does not purport Lo
describe a real situation; the goal of our analysis is to
show that incorporation of a self-consistent field into
the model allows new dynamic modes and new prop-
erties of the system to be detected.
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The emergence of additional steady states in
which the electroneutrality condition does not hold
implies that the membrane and the boundary layer are
components of a regulatory system capable, if needed,
of switching between electroneutral and electrogenic
states. This means that, in the membrane boundary
layer, a potential gradient might arise in the direction
perpendicular to the membrane that would serve as a
source of additional electromotive force and, as such,
would act like the transmembrane potential and en-
hance the electrogenic inflow of necessary substances
to the cell. :

Charge redistribution between the stable states
with the formation of a “step” (Fig. 6) creates poten-
tial gradients parallel to the membrane, affecting the
speed at which ions move along the membrane and
thereby accelerating their turnover. Such an effect
may be of importance in sessile Chara cells.

The formation of small areas where the system
exhibits aperiodic dynamics (Fig. 5) upsets the charge
balance only locally; beyond these areas, electro-
neutrality is retained. Such areas might be a kind of
marker for certain ion species, indicating where a re-
action is to take place.

Amplitude modulation of the structures arising
in response to perturbation of the homogeneous state
near the Turing bifurcation (Fig. 6) might be of infor-
mation significance for the system, because this effect
depends on the characteristics of the external stimulus
(perturbation) or, more specifically, on the dominat-
ing frequencies in its frequency spectrum.

Thus, combination of a nonlinear chemical reac-
tion with electrodiffusion processes provides addi-
tional energy sources in the form of electrochemical
gradients for cell ion transport and produces a variety
of dynamic modes.

REFERENCES

1. Lucas, W.J. and Nuccitelli, R., Planta, 1980, vol. 150,
pp- 120-131.

2. Fisahn, J. and Lucas, W.J., Planta, 1992, vol. 186,
pp. 241-248,

3. Fisahn, J. and Lucas, W.J., J. Membrane Biol. 1995,
vol. 147, pp. 275-281.

4. Fisahn, J. and Lucas, W.J., Proc. Natl. Acad. Sci. USA,
1992, vol. 89, pp. 3261-3265.

BIOPHYSICS Vol.47 -No.2 2002



10.

11.

12.

REACTION-ELECTRODIFFUSION SYSTEM

. Toko, K., Hayashi, K., Yoshida, T., Fujiyoshi, T, and

Yamafuji, K., Eur. Biophys. J., 1988, vol. 16, pp. 11-21.

. Kotyk, A. and Janacek, K., Membrane Transport: An

Interdisciplinary Approach, New York: Plenum, 1977.
Translated under the title Membrannyi transport, Mos-
cow: Mir, 1980.

. Hodgkin, A.L. and Huxley, A.F., /. Physiol., 1952,

vol. 117, pp. 500-544.

. Lavrova, A.L, Plyusnina, T.Yu., and Riznichenko, G.Yu.,

Matematika, Komputer, Obrazovanie, 2001, vol. 2,
no. 8, pp. 564-572.

. Malchow, H., Zeitschrift fiir physikalische Chemie,

1998, vol. 204, pp. 95-107.

Sevcikova, H., Kosek, J., and Marek, M., J. Phys.
Chem., 1996, vol. 100, pp. 1666-1675.

Munster, A.F., Hasal, P., Snita, D., and Marek, M.,
Physical Review E, 1994, vol. 50, no. 1, pp. 546-550.

Munster, A.F., Waluzl, M., and Schneider, F.W.,
Physica Scripta, 1996, vol. 67, pp. 58-62.

BIOPHYSICS Vol.47 No.2 2002

13.

14.

15;

17.

AN

271

Lobanov, A.l., Plyusnina, T.Yu., Riznichenko, G.Yu.,
Starozhilova, T.K., and Rubin, A.B., Biofizika, 2000,
vol. 45, no. 3, pp. 495-501.

Rubin, A.B., Biofizika (Biophysics), Moscow: Knizhnyi
Dom Universitet, 2000, vol. 2.

Ortoleva, P. and Schmidt, S., Oscillations and Tra-
veling Waves in Chemical Systems, Field, R. and
Berger, M., Eds., New York: Wiley, 1985. Translated
under the title Kolebaniya i volny v khimicheskikh
sistemakh, Moscow: Mir, 1988, pp. 400-407.

_ Barenblatt, G.1., Podobie, aviomodel’nost’, i prome-

zhutochnaya asimptotika (Similarity, Self-Similanty,
and Intermediate Asymptotics), Leningrad: Gidrome-
teoizdat, 1982, 2nd ed.

Volosevich, P.P. and Levanov, El, Avtomodel'nye
resheniya zadach gazovoi dinamiki i reploperenosa
(Self-similar Solutions to Problems of Gas Dynamics
and Heat Transfer), Moscow: MFTI, 1997.

. Samarsky, A.A., Galaktionov, V.A., Kurdyumov, S.P.,

and Mikhailov, A.P., Rezhimy s obostreniem v zada-
chakh dlya kvazilineinykh parabolicheskikh uravnenii
(Blow-Up Modes in Problems for Quasi-Linear Para-
bolic Equations), Moscow: Nauka, 1987.



	Biophys.2002.V.47_Page_1
	Biophys.2002.V.47_Page_2
	Biophys.2002.V.47_Page_3
	Biophys.2002.V.47_Page_4
	Biophys.2002.V.47_Page_5
	Biophys.2002.V.47_Page_6

