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Abst ract-s-A study was made of the properties of a rcacuon-elcctrodiffusion system. A two-component
model was developed to describe how interacting charged panicles diffuse near the membrane in
low-ionic-strength media for which the common assumption of electroneutrality is invalid. Analysis of this
rnodel-c-ccnsuucted to take into account the presence a self-consistent field-shows that the latter contrib­
utes to the emergence of bistability, localized structures with highly heterogeneous spatial distributions of
charges, and spatially and temporally aperiodic modes.
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INTRODUCfION

Involvement of charged molecules in many
chemical and biological processes leads to the need to
examine the role of the so-called self-consistent field, or
electric field arising from interaction of moving charged
particles, in producing various dynamic modes.

Ions are essential for live organisms. Among
ionic processes in the cell. most important are the
generation of potential gradients across the membrane
and the movement of electric pulses. There are plant
species that fonn alternating zones of high and low
concentrations of some ion (in terms of nonlinear dy­
namics. such zones are known as dissipative struc­
tures). For example, acidic and alkaline regions alter­
nate over the surface of filamentous algae Nitella and
Chara [ 1-3]. They differ in the membrane potential
[4J and the potential of the adjacent layer (5]. These
potential variations are a source of additional electric
gradients along the membrane. To study the mecha­
nisms of such phenomena. it may be essential not
only to know how particular ion channels and mem­
brane carriers operate, but also to understand how the
dynamical system behaves as a whole or, in other
words. how the spatiotemporal organiza tion of events
is affected by the presence of a self-consistent field.

There are two approaches to describing electric
phenomena at and near the membrane (6]. One ap­
proach called the equivalent electric circuit technique
was employed in studies of nerve impulse conduction
[7] and of potential profiles in Chura cells [5, 8J. The
second approach is to use the electrodiffusion equa­
tions, as in studies of the effect of external electric
fields on chemical reactions in hlgh-ionic-strcngrh so­
lutions [9- 13], for which the elecuoneutrality condi­
tion holds. This condition, if fulfilled. markedly sim­
plifies the analysis of problems. However, in biologi­
cal media, unlike chemical media, this is often not the
case. For example, departure from electroneutrality is
possible near cell membranes as a result of active ion
transport. the presence of the electric double layer,
and the presence of fixed charges on integral mem­
brane proteins.

The goal of this study was to demonstrate that
self-consistent field-related redistribution of mem­
brane charges and potential gradients gives rise to a
number of important biological effects in systems
with nonlinear chemical kinetics. We attained this
goal by solving reaction-electrodiffusion equations
for low-ionic-strength media where the common as­
sumption of electrcneutrality is invalid.

"

266



REACfION-ELECfRODlFFUSION SYSTEM

implying the absence of elec tric fields parallel to [he
mem brane surface.

As the ini tial condition, we chose the steady ­
sta te uniform distribution of ion concen tratio ns, that
is, the solution to the algebraic set j{c], C2) = 0 and
g{e" e,) = O.

Th e boundary condi tions for the Poisson equa­
tion were taken in the form

(2.1)

(2.2)IjI{O,1) = 1jI{I, 1) = 0,

where 't is time: ftcJ ' c2) and g(c], C2) are nonlinear
functions that describe the changes in ion concentra­
tions caused by chemical react ions at the membrane:
D. and D2 are the diffusion coefficients for positive
and negative ions, respectively; B. and B2 are their
mobilities in an electric field; y is the ratio of the char­
acteristic ion co ncentrations; and z is the va lence ratio
of ions.

The equations describing changes in ion concen­
trations were solved for no-flux boundary condi tions :

J ,(O,1) =J,( l, 1) =0

1,(0,1) =J, (I , 1) ~ O.

REACTION-Ef,.ECT RODlFFUS ION MODEL

Formulati ng the Problem

Let us consider a single cell placed in a weak
electrolyte solution. The ce lJ membrane is known to
carry an electric charge. Assume that its distribution
over the cell surface is uniform. To screen the cell
surface charge, electrolyte ions of opposi te charge ac­
cumulate near the ce ll membrane [14]. The span of
this opposite ly charged layer can be estimated: it is
the Debye radius (length). The Debye radius is usu­
ally much smaller than the cell diameter. Therefore, to
model the effects produced by ion movement along
the cell mem brane, we can consider the latter as an in­
finite boundary carrying an e lectri c charge. Thi s as­
sumption allows us to go over to a one-dimensional
problem.

In the sys tem of interest, all reactions altering
the concentrations of charged particles proceed on the
membrane surface. The electric double layer is sup­
posed to be in eq uilibrium with the rest of the e lectro­
lyte: the flux of ions leaving the layer by virtue of
their thermal motion eq uals the flux of ions arrivi ng
from the bulk solution.

( 1.1)

Malhem atical Model

Let the sys tem under study contain neutral parti ­
cles along with charged ones. Charged particl es may
be ions diffusing along the cell membrane and tak ing
part in various chemical react ions. Let the concentra­
tion of ions be much lower than that of neutral mole­
cules. In other words, we consider a low-ionic­
strength solution.

Var iations in ion concentra tions are descr ibed
by the reaction-electrodiffusio n equations [1 3]. With
the concentrations of positive and negative ions desig­
nated ' . and ' 2. respecti vely, the set of dimensionless
equations with one spatial variable (r) read s

dq = D
J

(12,. + H
J

dq a't' _
Crt ar 2 ar ar
-~Xq (CI - tYc2 ) +!(q ,C2),

0' 2 =D
2

a2C2 _

Ot ar 2
( 1.2)

ck2 a",
- B2 ar a;- +B2XC2(C. - ZYC2 ) + g(CJ ' C2 )'

a'ljIar' =-x(e, -zye, ~ (1.3)

ANALYSIS FOR SELF-SIMILARIT Y

As shown by On cleve and Schmidt [15}. the
lower the ionic strength, the greate r the effect of a
self-co nsistent field. To better understand the pattern­
ing in low-ionic-strength media, let us cons ider self­
similar solutions to the set of equations ( 1.1 )- (1.3).
Th is approach allows us to take account of the qua­
dra tic terms describing a self-consistent fie ld without
the need to assume that the mediu m is electro neutral.

It is known that, if a set of partial differentia l
equations admits a self-simila r solution, the degree of
that set can be reduced . For example, it is possible to
go ove r to a set of ordinary differential equations [16].
As such systems are characterized by self-similarity
[161, the solutions to the set of ordinary differential
equations will reflect the solutions to the original set,
provided thai large time intervals are considered .

By self-similar solutions we mean the solutions
obtained by a generalization of the variable separation
tech nique [17, 18), according to which the solution of
the orig inal equation is written as Ftr. "t) = Cj)("t )h(~),

where the seco nd multipl ier depends only on some
combination ; (r. t ) of independent dime nsionless
variables.
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Let u(r , 't ) and Y(r , 't) be small deviations from
the values of Cl and c2 corresponding to the uniform
steady state (c? and c~ . respectively). Self-similar
variables exist in the system (1. IH1.3) if its "chemi­
cal" part (equations describing the chemical reac­
tions) contains only quadra tic terms (that is. if linear
terms and terms of the third and higher orders in these
equations are neglig ibly small ).

Expanding the right-side functions in powers of
the new variables u and \I. and retaining only qua­
dratic terms. we obtain

au a2u auaw 2 2
at = DI ar2 +B1 ar a;+PIIU + Pl2uv + PI)\! •

(3.1)

Fig. 1. Modulated structures, as calculated in the
self-simllar syStem (S.lH 5.3) for DIJD, E 8 ,182= 3.
(Ill " a,P12· 14,P 13 · I, P21"' 0.5,P22:: - 24. (ln =2.85,
:-=I, y .. I, IOOX - O.99.

Y,

Y,

(3.2)

,( a' ljI
-=-x(u -ryv).ar' (3.3)

•
FIr.. 2. Lccaliaed struCtures with high spatia l variation in
charge density. as calcu lated in lhe sc: lr-similat system
(S.l H S.3) for Dill)". BI/S, "" 2.6, Pll = O. P l2 " - 25.
P ll "" 1.P21 . Oji. Pn - - 24. Pn· 2.85.1: = 1. 1 = I. and
X.. 1.035.

where constants Pi; are combinations of the sec­
ond-order rate constants of the "chemical" part of the
system and of the parameters of its "electric" part.
The Pu can take on positive and negative values.

The self-similar solution will be sought in the
form

Functions y,. Y2. and Y) are the solution to the
following set of ordinary differential equations

D '~ 'B "IY' +'2 YI + IYI Y3 +

+ Yl + Pl IYl2 + Pl2Y1Y2 + PnY ~ = O. (5.1)

D ' ~ ' B "2Y2 +2'Y2 - 2ZY2Y) +Y2 +

(4)

I
,(r . t) = - y, (~ ).

t

I
u(r . t) = -Y, ( ~ ).

'r

,

o

with the boundary conditions

yd...~ ._ = 0. y, I~~ . _ =0. (6)

Note that primes indicate dif(erentiation with reo
speer to the new independent variab le ~.
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FIr.. J. Phase ponra.iu of the mode l describing the loca l
chemical dynamics (I) without and (2, J ) with n:gOlrd for
the effect of. KI(-eonsislcnl electric field: (I ) stable fo­
cus, (2) saddle. and (1) stable node. Parameters used in
calculations; a _S. b.2S, 8 1 - 0.0 1, 82 .. 0.01. z .. 1.
., - I, and x. - 1.

+ PIIYl2 + PI2Y1Y2 + PIlY? = o.
y; +X(Y, - tlY , ) = O.

(5.2)

(5.3)



Fig. 4. Structures .....ith modu lated amplitude. 3 1 calcu­
lated in the rull IYllem or panial differential equaucns
II.l H I.3) Icr GI = 5, b :: 25.0,:: 10--', O2 = 1.5·10-".
B, - 0.1. 8 2", 0.15. : - 1.1" I, and X= 0.99.

Fig. 6. Step-hke dil tribulion or ion ecn cemrarions, ali

calculated in lhe rulll)'stem or panial different ial equa­
lions ( 1.1)-( 1.3) rc r GI '" 5. b :Ii: 25, 0 1 '" O2 '" 10--'. 8, =
_ 8, _ 0.I. z" 1. 1_ 1.;lnd X. I.
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Fig. S. Localized structures with high spatial var iation in
charge density, as calculaled in the futl sysrem or partla!
differential equations(1.1H IJ ) Icr GI =5.21, b :: 27.144,
0, _ 1Q"'4. 0, _ 1.5·1Q"'4, B,:Ii:0.03. 82 ", 0.045. Z= I .

'Y'" l. andX - 1.
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g(u, v) =bu _ u 2v.

Note that the Brusselator is expanded by incor­
porating the quadratic terms whe reby the presence of
a self-consistent field is taken in to consideration . In
the expanded model . more steady states are poss ible
than in the original one (Fig. 3 )_ Speci fically . in

REACDON-ELECTRODIFFUSION SYSTEM

RESULTS OF NUMERICAL EXPERIMENTS

! (u.v ) =a - (b + l )u +u~v,

Analysis of the fu ll system in parti al derivati ves
( I.IH I.3) shows that the interplay between particle
transfer in an electric field and diffusion gives rise to

a variety of modes.

To have nonlinear terms in describing chemical
reactions. we chose equations of the Brusselaror

model :

Conditions (6) imply that we look for locali zed
structures. Far off the coo rdinate origin. 't he system
remains in a spatially homogeneous steady state .

The solutio n can be con tinued into the range of
negative ~ values as an even function by setting sym­
metry conditions at ~ = 0:

OY;I = 0 ~ = 0~~ oo(l • ~f, -o • ;=1 . 2.

Although we confi ned ourselves to seeking only
self-si milar solutions to the full model, this app roach
allo ws us to understand some general rules of pattern
formation under the action of a self-consistent field in,
reacuon-electrodiffusion systems. Of course, in real
systems the roles of linear terms and terms of the third
and higher orders cannot be neglected . Expectedly,
their co ntribution would lead eith er to pauem stab ili­
zat ion. or to significant deviation from self-similar so­
lutions. Still we suppose that real systems may have
initial conditions required for bringing into play sce­
narios close to self-similar ones.

Numerical analysis of lhe set of self-similar
equations (5.JHS.3) revealed a number of modes.
Described be low are these that arc analogous to the
modes found in the full model ( 1.1)-( 1.3). Non­
monoton ic structures develop in model (5 .1)-(5.3)
fro m spec ial initial co nditions called the Cauchy data.
The ampli tudes of the structural elements depend on
the self-similar var iable ~. With increasing ~. the am­
plitude first passes throu gh a maximum and then lev­

els o ff (Fig . I).

Figure 2 shows more interesting so lutions to
model (5.1)-(5.3) : a loca lized structure with high spa­
tial variation in the charge dis tributio n. Its size is
small compared wilh the spatial sca le of the problem .
Beyond the region occ upied by this structure, ions re­

main uniformly distributed.
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