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Abstract-A model is proposed that describes electrodiffusion in the layer adjacent to the cell membrane.
The model takes into account chemical reactions at the membrane, Coulomb interactions between particles,
their random motion (diffusion), and the effect of an external electric field. Linear analysis of the model
shows a possibility of spatiotemporal patterning in the presence of an applied electric field. The dissipative
structures formed in the presence and the absence of the electric field differ in a number of characteristics.
First, the former structure drifts. Its slow drift proceeds unidirectionally. While it drifts, the number of its
structural elements varies. Second, isolated soliton-like structures may emerge in this system. as the disper­
sion relation contains not only even, but also odd powers of the wavenumber k. In addition to Turing-type
diffusion instability, dispersion instability may arise in the presence of an external electric field, also caus­
ing spatiotemporal patterning.
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INTRODUCTION

Since the appearance of Turing's classical work
The ChemicaL Basis of Morphogenesis and works
from the Prigogine-Glansdorff-Nicolis school, it has
become clear that, varying the parameters of the dis­
tributed reaction-diffusion systems, one may observe
generation of structures from an initially uniform sta­
tionary state at certain diffusion coefficient ratios
[1-3]. Bifurcations in such systems represent alter­
ations of the type of the spatiotemporal regime, e.g.,
the emergence of a dissipative structure from a homo­
geneous stationary state, or transitions from a station­
ary structure to traveling or standing waves.

Bifurcations in the spatiotemporal distributions
of ions along the cell membrane or in cell ensembles
may be of particular significance in developmental
processes. A description of the effects of an external

Abbreviation: OS. dissipative structure.
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electric field on interacting particles should necessar­
ily include not only their chemical conversions, but
also Coulomb interactions. with one another and the
electric field. These factors may prove to be important
in regions where the electroneutrality conditions do
not hold. In describing a thin boundary layer of the
order of the Debye length adjacent to the cell mem­
brane, it seems useful to employ an approach analo­
gous to those used in description of the processes in
electrolytes [4] or commonly used in membrane elec­
trochemistry [5]. The model constructed in these
terms provides new insights into the\role of electric
fields in spatiotemporal bifurcations.

There are studies that consider the spatial scale
on which the electroneutrality conditions still hold.
Leonetti and Peke [6] suppose that, compared with
the transport processes, chemical reactions proceed
much more rapidly. Therefore, the reaction terms may
be neglected. As the size of the area they consider is
great relative to the Debye length, the condition of
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bulk electroneutrality allows the authors to reduce the
system to two Laplace equations, one describing the
concentration and the other the potential, and to set
the boundary conditions as a certain combination of
fluxes across the membrane. This approach makes it
possible to describe the stationary distributions of po­
tentials and ion concentrations at great distances from
the membrane; however, it does not apply to the pro­
cesses in the boundary layer.

In the known nonstationary models [5-8], the
electric current density (the electric field strength) is
assumed to be uniform. Notwithstanding, in one of
these studies, a conclusion is made that appreciable
field gradients may develop upon even a minor local
disturbance of electroneutrality.

U is the stationary rate of ion motion in the medium.
For positive ions, U = bE = eBE, where b is the mo­
bility of a particle in the electric field, e is the electron
absolute charge, and B is the proportionality coeffi­
cient, which relates the force acting on the particle to
its velocityFor negative ions, U = -bE.

According to the principle of superposition, the
electric field of strength E can be written as a sum of
the external field applied to the system and the field
created by the moving particles themselves. Let us de­
note the first summand as EOOI and the second as E•.
Subscript s in the latter indicates that the field created
by particles is self-consistent. As the external field is
independent of the charge distribution in the system,
its strengtli satisfies the condition:

When deriving a set of equations below, we will
demonstrate that additional nonlinear terms have to be
introduced into the reaction part of the model to de­
scribe local perturbations of electroneutrality and that,
in the general case, these terms are not small.

divEout =0.

For the self-consistent field, we have:

di E
1 e

v.=-p=-n,
eoe eoe

(2)

(3)

MODEL OF PROCESSES
IN THE MEMBRANE BOUNDARY LAYER

The main objective of this study was to describe
the processes of ion transfer across the cell membrane
and the effects of external factors, such as an electric
field, on these processes. It is transport of charged
particles that is sensitive to the presence of electric
fields. To take this fact into account, we have to mod­
ify the known set of equations of the reaction-diffu­
sion type.

where p is the charge density, £0 is the dielectric con­
stant of the medium, and n is the particle concentra­
tion.

Dividing equation (l) by the elementary volume
.Q and then passing to the limit .Q- 0, we obtain:

~~ =-divW + f=DL1n-div(bnE) + f(n).

Equations (2) and (3) allow this equality to be
rewritten in the form:

To derive the equation of motion of charge parti­
cles, let us consider an elementary volume .Q with the
boundary &2. The change in the total number of parti­
cles in this volume will read:

aN J-;-=- (W,n}dS +.tn,
at ilQ

(1)

~ e
-;-=DL1n-b(Eout , Vn)-b(E., Vn)--bn2 + fen).
at eoe

(4)

The E. is determined from equation (3). If the
system contains differently charged particles, general­
ization (4) is easily derived analogously, resulting in:

where N =.an, with n being the particle density; W
denotes the particle flux across the boundary; n is the
outward normal to the volume boundary; and f is the
function of the volume source of (or sink for) parti­
cles describing their production (utilization) in chemi­
cal reactions. Let W be a sum of the diffusion flux
-DVn, which is associated with chaotic (thermal) mo­
tion, and the electrostatic force-driven flux nU, where

(5)

(6)
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where T is the temperature of the medium and k is the
Boltzmann constant.

where subscript i is used to indicate the ith type of
ions; b, and Z; are the mobility and the valence of the
ith ion. respectively (Z, assumes both positive and
negative values).

According to the Einstein formula. the diffusion
coefficient of a particle is related to its mobility as

Let us introduce independent scale factors for
time (To). length (La). electric field strength (Eo). and
ion concentration (no). Note that the concentration of
the most abundant ion is chosen to be the ion concen­
tration scale factor. The scale factors for time and
electric field strength may be taken in the following

e
forms: To = 0 and Eo = eLonoEo-I. Here, B I de-

2es»;
notes the maximal ion mobility. Rewritten in these
terms, equations (5) and (6) appear as

an. d 2B, B·
:I~ =_~_' lin; __, Z;(E

OU'
+Es • V'n;)-

(H L~BI 2BI

B, K
--'-Zjn;LZ1nl +TO/;(nl ..... nK ) . (8)

2EE, 1=1

Equations (8) contains the parameter d = EokT
2e2 no'

which represents the Debye length. The role of this
parameter in our problem will be discussed below.

Let us consider the cell membrane in the me­
dium. We assume that the membrane length is much
greater than the size of arising inhomogeneities. Our
analysis concerns the ion concentration distribution
along the outer surface of the membrane. A one-dim­
ensional problem will be considered as a first approx­
imation. Let n l and ~ be, for certainty. the concentra­
tions of positive and negative ions, respectively. and
their charge be equal to the electron charge e. The
membrane itself is also charged, with th~ charge sur­
face density of 0. The size of the layer in which the
electroneutrality balance may be disturbedby an ex­
cess of ions opposite in charge to 0 is determined by
the Debye length.

Let us consider the membrane boundary layer of
the Debye length. In this problem. the Debye number

n =n d 3 =(~Eok)3 T312 n-1I2 is small' therefore col-
D 0 2e2 0 • •

lective effects like ambipolar diffusion do not mani­
fest themselves. If so. the formulas written above
holds. We also assume that the external field Eou, is
directed along the membrane surface. As the layer is
thin. the reactions at the membrane surface are sup­
posed to span the entire layer.

(7)D=kTB.

It is convenient to rewrite the equations describing the spatiotemporal dynamics of ion distribution in the

following dimensionless form:

(9)

se, 1 )-a=-(nl -~ •
!X E

where D I and D2 are the dimensionless diffusion coef­

ficients, and B I and B2 are the dimensionless mobili­

ties of ions. The external field will be considered to

be a given function of time that does not depend on

coordinate x.

In its structure, model (9) coincides with the mod­
els described in [5-8], differing from them only in the
presence of nonlinear terms of the form B/E·nj(n; - n).
As will be obvious below. these additional terms do not
influence the results of the linear analysis of the model;
nevertheless. their contribution may be appreciable.

BIOPHYSICS V61. 45 No.3 2000
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,

dUo
-=( -k2 +a)uo +cv o,
dt .

(11)
dv ,
dt =(-k2 0 +d -lke)v +fu.

It is convenient to analyze set (11) using its
real-valued representation and introducing the desig­
nations u = Uo+ iU1 and v = Vo+ iv(:

Note that, in the frequency domain, real-valued
set (10) corresponds to complex-valued set (11). In
the case of the usual diffusion-reaction system, set
(10) is real-valued, because it contains only dissip­
ative terms (at -k2).

LINEAR ANALYSIS OF THE MODEL

In the vicinity of the spatially homogeneous sta­
tionary state, set (9) of equations reads:

au a2u au
-at=D( ax2 -B(EOU1 ax +au+cv,

Here, Bland B2 are the mobilities of monovalent
ions; EOU1 is the strength of the electric field applied; a,
C, d, and f are the elements of the Jacobi matrix of the
system calculated for its equilibrium state. Without
loss of generality, we can assume that a + d < 0 and
a > O. In this case, u may be interpreted as the activa­
tor and v as the inhibitor. The effects of the
self-eonsistent field are described by terms of the or-,...
ders higher than the first one. We can change the
characteristic spatial scale and rewrite the set:

au a2u au
at =ax2 -b(Eou1 ax +au+cv,

du ,
-=(-k- +a)u+cv
dt '

Let us Fourier-transform set (10) with respect to
variable ~, as done in Turing's study [1]. Retaining
the same designations of the Fourier transforms that
used in the study cited, we obtain:

Here, 0 =D/D2 and b, =B/D(.

Introducing the variables 't = t and ~ = x - brEovI
gives: (13)

[(a-k2 -A)(d-k20-A)-cfJ +

+e2k2 ( - k: +a-A)2 =0.

Let us consider the conditions under which the
spatially homogeneous solution to set (12) loses sta­
bility. To do this, we have to find its eigenvalues,
which satisfy a biquadratic characteristic equation:

Let the roots of the equation

(a -k2 -A)(d-k20 -A) -cf=O (14)

For e = 0, equation (13) is equivalent to the
so-called dispersion relation.

A simple way to demonstrate that the system ac­
quires new properties by virtue of a small dispersion
summand in equation (13) is as follows.

be known for the regime calculated without regard for
the effects of the external electric field. If the homo­
geneous state is stable. Re A< 0 for all k: Let A· de­
note the eigenvalue whose modulus is the smallest
one. Obviously, ').." satisfies equation (14). We shall
seek the solution to equation (13) of the form A" + E,

where E is a small correction term to account for the
effect of the external electric field. In fact, we seek
the first term of the series expansion in e. Retaining

(10)

au a2 u
(ft =a~2 +au +cv,

av a2 v av
(ft =0 a~2 +e a~ + fu-v dv

where e =Eoulb. + b;).

As we will see below from analysis of this
model, the wavenumbers k and -k enter the equations
nonsymmetrically. This asymmetry is accounted for
by the different directions of the ordered motion of
positive and negative ions.

..BIOPHYSICS Vol. 45 No.3 2000
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the bracketed terms of equation (13) that contain E,

we obtain
eventual dissipative pattern does not depend on the
initial conditions.

and, hence,

xtekta-rk? -')...)
E= .

(d+a-kz(I +0)-2A.·)

Third, in addition to the Turing-type diffusion
instability, dispersion instability may arise in the pres­
ence of an external electric field, also causing spatio­
temporal patterning. This situation is feasible when the
system, while being stable with respect to Turing-type
patterning, comes close to'the bifurcation point

First, it slowly moves (drifts). The direction of
its drift is determined by the signs of the applied elec­
tric field and the activator-ion charge.

If k is large, E - ik, that is, the contribution of the
correction term is in the imaginary subspace. If k is
small and ').. is complex, the real part of the eigenvalue
is also contributed to. Its sign may change if

In physical terms, this means a possibility of a
dissipative structure (OS) arising in the system. This
dissipative structure differs from the structure form­
ing in the absence of the electric field in a number of
characteristics.

where a = Re ')... and ~ = 1m),:. Relationship (15)
serves an approximate condition for the loss of disper­
sion stability upon application of a weak external
electric field. Knowing ')..·(k) makes it possible to de­
termine the critical value of the wavenumber k
whereat the spatially homogeneous solution loses sta­
bility. Obviously, if the electric field is reversed in
sign, the sign of k is also reversed.

We tried to test these predictions using as an ex­
ample set (9) of equations describing the Brusselator­
type kinetics [2, 3]. In these equations, ft(n t , nz} and
h(n l , nz} were specified as follows:

ft(n l , nz) = a + ninz - (~ + l)n l ,

h(nt , nz) = -nfnz + ~nl'

The splitting scheme described in [11] and mod­
ified to be acceptable in calculating equations with
gradient terms was used to numerically solve the set.
This allowed the boundary problem of determining
the potential to be solved separately.

If ion mobilities were set to zero (BI =Bz =0),
the system was insensitive to electric fields, whether
external or self-consistent. As a testing example,
Figure 1 shows a Turing-type structure formed from
the spatially homogeneous stationary state in response
to a random perturbation. Specifically, the first reac­
tant (activator u) concentration is shown for the fol­
lowing values of the model parameters: D I = 0.0001,
Dz = 0.001, a =1.0, and ~ =3.0.

To exemplify the first effect, that is, the forma­
tion of drifting structures of the Turing type, we ex­
amined the same system for B, =0.001, Bz =0.01,
E =1.0, and E =1.0 while varying the critical value of
the wavenumber k. Figure 2 shows the formation of
less steeply sloping structures. A decrease in the num­
ber of concentration maxima per unit segment is in­
dicative of the decrease in the critical value of the
wavenumber k. In addition, the amplitude begins to
pulsate. The phase of the drifting structure depends on
the initial perturbation.

With E increasing above 1.0, the critical wave­
number becomes lower, as follows from approximate

NUMERICAL ANALYSIS
OF THE MODEL

(15)

l3<a -d) + ~k2 (0 -1)
a=ke z

[a +d -P (0 +1) -2a] +4~z

_ ke[a-d+kZ(O-l)]

- 4~

Second, the dispersion relation contains not only
even, but also odd powers of the wavenumber k. For
this reason, k and -k enter formula (15) nonsym­
metrically. This entails the dependence of the dissip­
ative pattern on the initial conditions, because the ini­
tial conditions determine the initial values of func­
tions Uo, U l, Vo, and VI' When going over to variables x
and t, we obtain structures, which are phase-shifted
relative to one another, with the phase shift depending
on the initial conditions. In the model without regard
for the effect of the external electric field, the

BIOPHYSICS Vol.45 No. 3 2000



"

488 LOBANOV et al.

·s'
Fig. 1. Dissipative structure arising in the Brusselator-
type model constructed without regard for electrostatic
interactions: the concentration distribution of activator u
in the (x, t) plane. See text for the parameter values.

x
Fig. 2. Dissipative structure arising in the Brusselator­
type model modified to take into account the effects of an
applied electric field. The solution is shown as the con­
centration distribution of activator u in the (x, t) plane.
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Fig. 3. Solitary structures ansmg in the modified
Brusselator. The solution is shown as the concentration
distribution of activator u in the (x, t) plane.

x
Fig. 4. Pattern formation in the Turing-stable Brusselator
in response to application of an electric field The solu­
tion is shown as the concentration distribution of activa­
tor u in the (x, t) plane.

formula (15). For E = 10.0, only one maximum of u
goes into the unit-length segment. The pulse ampli­
tude varies while it drifts (Fig. 3). In appearance, this
solution resembles the so-called breathers of the
sine-Gordon soliton equation [12]. It is pertinent to
the question to recall that the reaction-diffusion

equations are known to possess soliton-like solutions
[13-15]. Interestingly, such soliton solutions arise in
the models that describe nerve pulse propagation [14]
or processes in cardiac muscle [15], that is, in the sys­
tems in which electrical interactions playa significant
part.

. . ·BIOPHYSICS Vol. 45 No.3 2000
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Fig. 5. Pattern formation in the Turing-stable Brusselator
in response to application of a high-strength electric
field: structures with forerunniag small-amplitude pulses.
The solution is shown as the concentration distribution of
activator u in the (x, t) plane.

An external electric field may cause patterning
even in such a reaction-diffusion system that is Tu­
ring-stable in its basic form. Let D, be 0.()()()()5, Dz
0.0001, a 1.0, p1.5, B, 0.001, s, 0.002, and £ 1.0. In
this case, the brusselator has a unique stable station­
ary solution, and Turing's instability does not mani­
fest itself. In the absence of the external field, all per­
turbations are rapidly damped. Application of the
field leads to the formation of drifting structures. The
structure shown in Fig. 4 was generated for E =10.0.
With E increasing above 10.0, the number of struc­
tural elements going into the unit-length segment de­
creases, and they arise at longer intervals one after an­
other. Figure 5 shows a fragment of the spatial and
time series for E = 25.0. Evidently, drifting pulses
arise at long time intervals, each with its small-amp­
litude forerunner.

CONCLUSION

In the boundary membrane layer, ions may ei­
ther undergo lateral transfer (diffusion and convec­
tion) or be involved in transmembrane transport. This
study gives a mathematical description of these pro­
cesses for a one-dimensional case. The results of ana­
lytical analysis of the linearized system and of numer­
ical analysis of the initial nonlinear set demonstrate
that application of an external electric field may alter
both the conditions for the generation of spatiotemp­
oral regimes and their types. Assessing the critical

BIOPHYSICS Vol. 45 No.3 2000

parameter values (electric field strength, ion mobility,
etc.) for particular systems' will make it possible to re­
veal the range in which electric fields cause biologi­
cally significant effects.
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