o

T i o

ELSEVIER

Bioelectrochemistry and Bioenergetics 35 (1994) 39-47

BIOEUCEIRDERER SR
B OENERGHIIES

Modelling of the effect of a weak electric field on a nonlinear
transmembrane ion transfer system

G.Yu. Riznichenko *, T.Yu. Plusnina, S.I. Aksyonov

Biological Faculty of Moscow State University, 119899 Moscow, Russian Federation

Abstract

A mathematical modelling of the K*/H™" antiport system was carried out to investigate the influence of a weak low-frequency
applied periodic electric field on ion flux via a carrier across the lipid membrane. Nonlinear in character, the system can have a
damped oscillatory, trigger or self-sustained oscillatory behaviour depending on the pattern of the ionic flux. Numerical
calculation showed that the applied electric field could parametrically regulate nonlinear biological systems and the effects can
be significant in bifurcation areas. The intensity of applied periodic electric field was estimated to be in the range 10-600 V

cm ™! and the frequency in the range 10~2-10 Hz.
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1. Introduction

The influence of weak low-frequency electromag-
netic fields on living organisms has long been, and still
is, a problem of interest to investigators. Ten years ago
the question was whether such fields do exert an influ-
ence on living organisms. The major problem nowadays
is the understanding of its mechanisms.

A wealth of approaches to the problem have been
proposed in the literature and can be divided into two
groups: “energetic’ and “informational”. The first-
group mechanisms are those where the absorption of
electromagnetic energy by molecules or structures of
higher order is followed by electron excitation or by a
conformation transition, or by the formation of dipoles,
etc. [1-6]. These mechanisms, however, are inadequate
to explain the effects of extremely low-amplitude, low-
frequency electromagnetic exposures. In contrast, the
adherents to the “informational” approach consider an
electromagnetic signal as a piece of information con-
veyed to living system [7-10]. The energy of the signal
can be very small and all the subsequent conversions in
the system are implemented using the energy of the
system itself, produced as a result of naturally occur-
ring processes.
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We shall draw attention here to some specific re-
sponses of biological systems observed in experiments.
A response is evident, or exists, only in certain (some-
times very narrow) ranges of frequencies and/or am-
plitudes. The biological effects are not proportional to
the intensity of the applied field and are of a threshold
kind of pattern. The nonlinear character of such effects
has been reported {11-13]. Our view is that nonlinear-
ity is not a mere characteristic of the biological prop-
erty of a living system, being out of equilibrium ther-
modynamically. It is a property due to which “small”
exposures can bring about “large” responses. In terms
of nonlinearity, the major cause of the observed re-
sponses to weak electromagnetic signals, the specific
behaviour of biological systems mentioned above, can
adequately be explained. The “informativity”’, the ma-
jor tenet of the concept, arises from the fact that
applied field affects the parameters of the system,
rather than its structure elements. This is important to
emphasize. Because of the structural stability of the
biological systems, a small perturbation cannot usually
bring it out of homeostasis. However, in the neighbour-
hood of the bifurcation boundaries of the parameters,
a perturbation of these parameters can cause sharp
changes in the kinetic structure and function of the
system. In this paper we shall illustrate this using three
nonlinear models of ion transport systems.

Many investigators of weak electromagnetic expo-
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sures believe that membranes and adjacent areas abun-
dant in ion flows are targets for an attack of electro-
magnetic fields [1-3,5,6,14). Indeed, the solid-to-liquid
interface is a premise for the occurrence of nonlinear
processes in the membrane and adjacent to it, and the
parameters of the ion flux may be a target for an
electromagnetic attack. Experimental data are avail-
able from studies in which ion flows were subjected
directly to weak electromagnetic fields [15-17]. To
illustrate our approach, we constructed models of
transmembrane ion transport, each with its own type of
nonlinearity.

2. Mathematic modelling and computer simulation

2.1. Effect of variable electric field on K */H * antiport
system, a kind of resonant system

The first of our models considers a resonance re-
sponse of the system to the applied electric field. The
principal features which distinguish our approach from
approaches of other resonance models (e.g. the model
of Tsong and co-workers [5,6,11]) are discussed below.

Let consider an open transmembrane ion transport
system in which proton H* and potassium ion K* flux
flow in and out of the near-membrane layer (V' and
Vi are influx rates; k[H*] and kg[K*] are outflux
rates) and their antiport via carrier T~ (Eq. (1)). To be
certain, we take nigericin as a carrier, known for its
two sites of binding: one for a proton, H*, and the
other for a K™ ion.

In constructing the kinetic model of ion transfer
across the membrane, we use the following assump-
tions:

the T ~carrier can mediate proton and ion transport
in the form of both neutral TH and TK complexes and
a charged THK* complex:

the affinity constant is much larger for a TH-K*
complex than for a T-K complex [18]; a K* ion cannot
force H* out of a TH complex, and for that reason it is
transferred in a protonated form of complex, TH-K™.

With the above assumptions, the kinetic diagram for
the antiport can be presented as

k k
Z=TH—2s7- [?

k
k-, +Hf ——

i -
Vg—H* +

k k
——K{ +|TH LS THR =2 |+ K —— Vk
-3

(1)

where subscripts 1 and 2 on ion concentrations repre-
sent the solution on each side of the membrane, & _;
(i = 1, 3) are rate constants of association and dissocia-
tion of the ion-transporter complex and k; (i=2, 4)

are effective constants of the complex translocation
and dissociation.

The system of equations describing the above reac-
tions takes the form

d[H{]/dt=Vy -k [HT][T"] +k_,[TH]
4[KS] /dt = Vi — k..o [KS][TH) + k_,[THK*]

d[T~]/dt = =k ([HT][T"] +k_,[TH] + k,,[TH]
d[THK*]/dt = k . ,[TH][K}] - k_,[THK"]

~ k ,4[THK*]
[T~]+[TH] + [THK*] =T, (2)

where T, in the last mass conservation equation is the
overall transporter concentration. We pass then to
dimensionless variables: x =[H{1/K,, y =[K}1/K,,
1=1tTyk /K, where K =(k_s+k_ )/k 5, K =
(k_y+k,)/k,, and parameters e=To/K _, Vy=
VuKn/(k ToKy), Vi =Vi/(ky Ty, a=

Kmk+2/(Kmk+4)'

Assuming T, < K,, allows one to introduce the
hierarchy of times and thereby to facilitate the system
of differential equations. In the limit transition, as
€ — 0, the system of differential equations within di-
mensionless variables using the above denotations is
recast in the form

dx/dr=Vy—ax/(1+x+xy)
dy/dr=Vy—w/(1+x+xy) 3)
The steady-state values of x and y are
X=Vy/la(1-Vy) - Vyl, y=Vxa/Vy

Solving the characteristic equation of the linearized
system vyields the condition for a focus-type steady
state:

Va(l = Vg) + [a(1 - V) = V4’
<2Vy?[a(1-Vy) — Vy]

With parameters agreeing with this condition, damped
oscillation of ion concentrations takes place (Fig. 1,
curve 1)

In describing the flow of charged particles in the
near-membrane layer and across the membrane, we
used the Nernst—Plank equation for electrically driven
diffusion:

J=uRT dc/ds —uczF d¢ /ds (4

and the linear approximation of the Poisson—-Bolzmann
equation:

d’p/ds*=«x*p, «k*=8wc.zZF%/(RTe,)

where z is the ion valence, T is absolute temperature,
R is the gas constant, F is the Faraday constant, u is
the mobility of ions whose concentration is ¢ in plane
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Fig. 1. Computer simulation of kinetics of a resonance system [7). x,
y, 7=Proton [H*] and potassium [K*] concentrations and time,
respectively. Curves 1, internal damped concentration oscillations in
K*/H* antiport. Curves 2, imposed by electric field concentration
oscillations in resonance in K /JH* antiport. Amplitude of applied
electric field A4 = 0.0005; resonance frequency w = 0.0064. Parame-
ters used: Vi =1, Vi = 0.96, a = 30.

28.6

s, ¢, is the electrolyte concentration, 2z, is the elec-
trolyte charge and ¢, is the dielectric constant.

Let the potential gradient d¢ in plane s be constant
for the membrane: d¢ /ds = constant (the assumption
is valid for a thin membrane) and d¢ /ds = constant be
true for the near-membrane layer. Let the ion concen-
tration gradient be constant in the near-membrane
layer and across the membrane: dc /ds = constant. This
allows one to represent the continuity Eq. (4) in the
form of the ion concentration rate:

V=dc/dt = uczFx*¢p )

Thus the rate of ion inflow into the near-membrane
area is linearly dependent on potential. Under a peri-
odic sinusoidal pattern of applied electric field, the ion
flow rate will vary as

Vu(1+4 sin w7), V(1 +A sin w1)

where A is the dimensionless amplitude and w is the
dimensionless cyclic frequency of applied electric sig-
nal. The amplitude reflects the relative proportion of
the strengths of the applied and the internal field in
the near-membrane region.

For the system in an applied field, Eq. (3) take the
form

dx/dr=Vy(l+Asin wr) —ax/(1+x +xy)
dy/dr=Vg(l+A4sin o) —yx/(1 +x +xy) (6)

With the applied field being of a small amplitude,
A =0.0005, and a frequency close to that of damped
oscillation in the non-perturbed system (3), systém (6)
gives a resonant response (Fig. 1, curve 2). Its fre-

quency response is presented in Fig. 2. It shows a
drastic dependence of the amplitude AH™ of proton
oscillations on the frequency of the applied field, and a
weaker one AK* for potassium ion oscillations. The
difference between the H* and K* ion frequency
response may be due to the difference in the H* and
K* mobilities. Within the ranges of variation of the
parameters considered in the model, namely, V; = 0.01
to 100, V¢ = 0.96 to 0.99 and a = 0.75 to 10 100, the
resonance cyclic frequency changes within an order of
magnitude: o, =4.9 X 107* to 7.5 X 107>.

To determine the resonance frequency of external
exposure in dimensional form, we estimated the eigen-
frequency f of the system in dimensional form:

f=woTok,s/27K,

with constants T,, k., and K, defined as above and
w, is the eigen cyclic frequency, wy = w,.

When the ion transfer across the membrane is a
limiting stage, kK, and the rate constant of the trans-
membrane ion transfer are of the same order of magni-
tude. As k_, > k_,, the expression for K, becomes

Kn=(k_s+k,s)/k3=k_s/k.,;

The K_, value for nigericin can be of the order of 1076
M, according to Ref. [19]. In Ref. [20], the value of &k,
for nigericin was estimated to be 1.7 X 10* s™1, For a
concentration of the carrier of T,=10"" M, f= 13 X
1072-2 Hz.

Hence the eigenfrequency of the system (and conse-
quently the resonance frequency of the applied field)
falls within the extremely low frequency range. In
numerical experiments, the strength of the applied
electric field was 0.0005 of that in the near-membrane
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Fig. 2. Amplitude—frequency response for proton (curve 1) and
potassium ion (curve 2) concentrations. Ax, Ay = Amplitudes of
proton and potassium ion concentration oscillations, respectively, as
functions of frequency w of applied electric field.
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area. If the membrane voltage is about 10 mV, which
corresponds to 2 X 10* V cm™! [5), the intensity of the
applied field is 10 V cm ™%,

This estimate of electric field strength is nearly the
same as that used in the experiments by Tsong and
co-workers [15-17]. The frequency of the applied field
was 1 kHz—-1 MHz, which was reflected in the electro-
conformation coupling (ECC) model [5]. As mentioned
above, in our model the key effect is resonance, as in
the ECC model. However, there is an important, dif-
ference of principle which allows one to explain the
lower frequency exposures used in other experiments
[21,22]. In the ECC model, the energy necessary to
produce this effect comes from outside, owing to the
applied electric field. At resonance it is “pumped” into
the system. As our system is open, and at all time ions
flow into it (Eq. (1), terms Vy and V), energy comes
in this way, i.e. most of the energy used in the effects in
question is generated by the living system itself. The
effect of the periodic electric field is presented as a
small additional term Asin(w7) in Eq. (5) where 4 =
0.0005 < 1. In this situation the function of the applied
electric field is to modulate the ion influx rate, that is,
it is informational in character.

Another feature, which is different from the above-
mentioned ECC model, is that the external field is
applied to the near-membrane region, not the intra-
membrane region. As seen from the kinetics, the rates
of the intra-membrane processes, although dependent
on potential because the carrier may be charged, are
not limiting. This is a quasi-equilibrium situation.
Briefly, this means that the intra-membrane ion trans-
port processes are fast and a low-frequency field can-
not “catch up” with them to produce its effect. It
should be noted that the authors of Refs. [23,24]
pointed out a greater probability of the influence of
applied field on the processes in the near-membrane
region, rather than on the conformation transition of
the carriers.

2.2. Effect of a periodic perturbation on a multi-stable
transmembrane ion transport system

We have considered above a K*/H™ antiport model
in which there is a stable focal point. A system of this
kind can amplify weak external periodic action at fre-
quencies close to the natural frequency of the system.
That is, it can act as a sort of resonance amplifier.
Systems of another type, e.g. systems having more than
one stable steady state, can also change their state
significantly under a weak periodic exposure. A phe-
nomenon of specific interest is parametric frequency
regulation, when there is a critical frequency of the
weak external signal capable of switching the system to
a state other than the initial steady state. A flip-flop-like
behaviour can be observed with differently modified

transmembrane ion transport systems. In particular,
the system in Egs. (1) becomes bistable when the
protonated carrier can bind another proton to the
binding site of ion K* and the complex formed cannot
be transferred across the membrane. A scheme of the
reactions in this system is shown in Egs. (7).

kit k

1 T- TH—2,T- )
) HY + = .
H ks 20 F +H ——
pry| TH = (TH?)
kg +K¥—Vi(d)
A PRI e B M )
k_3
(7)

where subscripts 1 and 2 on ion concentrations repre-
sent the two sides of the membrane. k ; (i=1, 3, 5)
are rate constants of association and dissociation of the
ion-transporter complex; k; (i =2, 4) are effective con-
stants of the complex translocation and dissociation.
Using a system of equations analogous to Eq. (2) with
dimensionless variables and a proper hierarchy of times,
one obtains

dx/dr=Vy—kyx—ax/(1+x+xy+bx)
dy/dr=Vg—yx/(1+x+xy+bx) (8)

where a =K k_ ,/(Kpk.,), Ky=(k_s+k,)/
kisKn=Ck_y+k)/k y, b=Kpk, s/k_s
The steady-state solution is derived from the equations

y=Vxa/(Va—kuX)
Vu—kuX—at/(1+%+bx+Vyak/(Vy—kuy%)) =0

For proton concentration, the steady-state solution x
can be derived from the third-degree equation

~bky (%) + (%) (bVy — ky)
—X(ky—Vga+a—Vy)+Vy=0 9)

Depending on the sign of the discriminant, Eq. (9) can
have one, two or three positive roots. The latter situa-
tion reflects three steady states of the system, two
stable points and one unstable point (Fig. 3). The
system can assume one of the two stable states, de-
pending on the initial concentrations of the ions. The
system can be controlled by varying the rates of ion
inflows Vy and Vi to domains. There is a narrow
parametric region in which the system operates in a
flip-flop manner (Fig. 4(a,b)). For V; there are two
edge bifurcation values in the positive region, Vy, and
Vi, (Fig. 4(a)) and for V¢ one bifurcation value Vi,
(Fig. 4(b)). In the presence of applied exposure, the
system of Eq. (8) takes the form

dx/dr=Vyu(1l+Asin wr) —kyx
—ax/(1+x+xy+bx)
dy/dr=Vg(1 +Asin wr) —yx/(1 +x+xy + bx)
(10)
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The results of computer simulation show the follow-
ing. With a fixed amplitude of A = 0.03 of the applied
exposures the frequency was varied in the range o =
0.01-0.1. Within this range, with two critical values of
the frequency, w, = 0.047 and w, = 0.023 were found.

With a fixed amplitude and a high frequency w = 0.1
of the exposure, the system oscillates with small ampli-
tude around one of the steady states according to
initial conditions (Fig. 5(a)). On reaching the value w,,
the system assumes a configuration with a single stable
state (3) irrespective of the initial conditions. When
movement begins somewhere in the vicinity of state (1),
a switching to the state (3) occurs (Fig. 5(b)). One can
explain a switching to only one direction by the follow-
ing. With w, the period of the applied perturbation is
larger than the time of the transition from state (1) to
state (3) and smaller than the time of the backward
transition.

On reaching the second critical frequency w,, the
system enters into oscillations between two stable states
(1) and (3). Now the period of the applied perturbation
is larger than both the time of 'the direct transitions
and the time of the backward tramsition. Hence the
periodic transitions between two states take place (Fig.
5(c)).

The technique used to estimate the applied field
frequency and intensity in dimensional form was that
employed previously for a resonant oscillatory system:
f=woTsk,,/2mK,, where w, is the frequency in
dimensionless form. The interval of existence of two

1
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Fig. 3. Phase diagram of a bistable system [8]. x, y = Dimensionless
variables for proton and potassium ion concentrations, respectively.
States (1) and (3) are stable, state (2) is unstable. With V; = 10.637,
Vk = 0.0325, a = 26.44, b = 0.696, ky; =1, the system has two stable
states, x; = 1.08, y, =0.09, X¥;=15.59, y;=0.17.
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Fig. 4. Bifurcation diagram. (a) Dependence of steady-state dimen-
sionless proton concentration ¥ on the Vy (proton influx rate into
near-membrane region). In the area between Vyy; =10.34 and Vi, =
10.94 there are three steady states. In the area Vi <V}, there is
one steady state (1) and in the area V> Vi, there is one steady
state (3). Parameters used: V| = 0.0325, a = 26.44, b = 0.696, k3 = 1.
(b) Dependence of steady-state dimensionless proton concentration
% on the Vi (potassium ion influx rate into near-membrane region).
In the area Vi, <0.065 there are three steady states. In the area
Vi >V, there is only one steady state (3). Parameters used: Vi =
10.637, a = 2644, b= 0.696, kyy =1.

critical values of frequency, discussed above, in dimen-
sional form is f = 6.2-12.7 Hz. The applied field inten-
sity is about 600 V cm ™!,

Thus, the multi-stationary membrane system can be
regulated by a periodic electric field of small ampli-
tude. There are critical frequencies at which the system
is switched from one steady state to the other.

2.3. Effect of a weak electric perturbation on a self-sus-
tained oscillatory system

Under some conditions, the non-linear ion transfer
system may go into self-sustained oscillations. A config-
uration of ion flux leading to self-sustained oscillation
is the following. Let us assume that ions are trans-
ferred only as THK* complexes. Complexes TH,
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(TH?)* and TK are inactive and are not transferred
across the membrane.
The antiport diagram appears as shown in Eq. (11).

1 kis + 2
H*+|TH

Vu(é)

H

k k
THK* — 5 TK | + Hf ——s
+K3

TH|+K3 ——Vk(¢)

H{ +|TK
H + kg

k k
—X K} +|TH——THK*

TK

(11)

where subscripts 1 and 2 on the ion concentrations
represent the sides of the membrane and k (i=
1, 2,...,7) are rate constants of the ion transfer stages.
Using a system of equations analogous to Eq. (2) and
making simplifications, one obtains a system of two
differential equations for dimensionless variables:

dx/dr=Vy—kyx —zbxy/[1 +b(x +xy +y) + x?]
dy/dr=Vy—bxy/[l+b(x+xy+y) +ex?|  (12)

where a=K k., o/(Knk,. Ky=Ck_s+k, )/k,,,
Kn=(k_7+k,e)/k,s, b=K +2/k » c=KJ
k+1k+5/k—1k—5~
Within the definite range of the parameters of the
system, the solution may be a limit cycle.
The coordinates of the unstable equilibrium point
are

X=(Vy—Vka)/ku

¥=Vg(1+bx +cx?)/[b(X - Vg - Vg¥)]

With an applied perturbation, the system of Eq. (12)
takes the form

dx/dr=Vy(l+Asin wt) —kyx
—abxy/[1+b(x+xy+y) +cx?]

dy/dr=Vg(1+A4 sin wt)
—bxy/[1+b(x+xy+y)+cx] (13)

To investigate the functional properties of a self-sus-
tained oscillatory system, we made a bifurcation analy-
sis and investigated the influence of the applied elec-
tric field on the system parameters. Varying the proton
inflow rate V' with the rest of the parameters fixed
yields the bifurcation picture shown in Fig. 6. With
Vi = 0.5241 in the system of Eq. (12) damped oscilla-
tions are generated. The steady-state point here is the
stable focus (Fig. 6(b), curve A). With Vi =0.5243,
Hopf’s bifurcation takes place, and a limit cycle is
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Fig. 5. Computer simulation of kinetics of a bistable K* /H™ an-
tiport system. x, y, = Dimensionless variables of the system for
proton [H*] and potassium [K*] concentrations and time, respec-
tively. (a) With fixed amplitude of external field (4 =0.03) and
relatively high frequency (w = 0.1), small-amplitude concentration
oscillations take place in the neighbourhood of state (1) or (3). (b)
With lower frequency of applied field, w, = 0.047 (the first critical
magnitude), the system possesses only one steady state (3). If the
movement starts near the point (1), parametric triggering to state (3)
takes place. (c) With the frequency of applied field w, = 0.023 (the
second critical point), concentration oscillations between two steady
states (1) and (3) occur. Parameters used: Vg = 10.637, Vi = 0.0325,
ky=1, a=10.44, b= 0.696.
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Fig. 6. Phase diagrams of the system of Eq. (12) with variation of the
control parameter V' (proton influx rate into near-membrane re-
gion). (a) Overall scheme. (b) Enlargement of the bottom-left region
of (a). With V;;=0.5241 the steady state is the stable focus ((b),
curve A). With Vi; = 0.5243, a limit cycle is generated ((a, b), curve
B). The cyclic amplitude is small at first: Ax =0.65, Ay =14 (x, y
are dimensionless proton and ion concentrations, respectively) but
increases with increase in Vyy. For Vi = 0.5245, the amplitude of
natural oscillations increases drastically: Ax =18, Ay =78 ((a, b),
curve C) and then increases slightly until V; =0.7 ((a), curve D).
With Vi = 0.71, a stable focal point appears in the system again ((a),
curve E). Parameters used: Vg =05, ky =001, a=1, b=1, c=10.

generated (Fig. 6(a,b), curve B). The cyclic amplitude is
small at first, Ax = 0.65, Ay = 1.4 (x, y are dimension-
less proton and potassium ion concentrations, respec-
tively), but increases with V. For Vi = 0.5244, Ax =1,
Ay =25 For Vi =0.5245, the amplitude of natural
oscillations increases drastically: Ax = 18, Ay = 78 (Fig.
6(a,b), curve C) and then increases slightly until V;; =
0.7 (Fig. 6(a), curve D). With V;; = 0.71, a stable focal
point appears in the system again (Fig. 6(a), curve E).

A can be seen, the region in which bifurcations
appear is very narrow: a change in parameter by 10000
fractions produces new behaviour patterns, from
damped oscillations to limit cycles of different ampli-
tudes. The effect of an external periodic electric field
was considered close to the bifurcation lines and within
the ranges of the parameters far from the bifurcation.
With V= 0.5241, which corresponds to the stable
focal point, and the amplitude A = 0.0005 (correspond-
ing to a field intensity of 10 V c¢cm™!) and cyclic
frequency o = 0.005 (corresponding to a field fre-
quency of 1.4 Hz) of the applied field, the system goes
into resonance, similar to what was described above for
a resonant system (Eq. (6)). Increasing the amplitude
to A =0.001 (corresponding to 20 V cm™!) leads to
different effects. With @ < 0.005, a limit cycle with a
small amplitude is generated. On increasing the fre-
quency above this value, a limit cycle with large ampli-
tude is generated. With w =0.02 (5.6 Hz), the cycle
disappears. Thus, at some amplitude of applied electric
field, varying the frequency causes oscillations of vari-
ous amplitudes or stops them.

In an applied electric field, the rates of influxes
beyond the bifurcation point are kept stable. With
Vy = 0.65 and amplitude A4 < 0.1 of the applied field,
no significant changes in the amplitude of concentra-
tion oscillations are observed. Only a phase shift takes
place. With 4 = 0.1 (corresponding to 2000 V cm™1)
one observes a resonance-induced increase in the con-
centration oscillation, by a factor of 1.2 for x (proton
concentration) and 1.7 for y (potassium ion concentra-
tion). With frequencies higher than resonance frequen-
cies, the applied periodic field modulates the oscilla-
tions, its amplitude changing little.

We also investigated the influence of the initial
conditions and phase of the applied perturbation. The
amplitude of the concentration oscillations remained
unchanged. Hence, beyond the bifurcation point, the
applied electric field causes a phase shift in the natural
oscillations and is almost without effect on the ampli-
tude.

It appears that beyond the bifurcation point a self-
sustained oscillatory system of transmembrane ion
transport with certain values of parameters is very
stable to weak electric perturbations. Noticeable
changes appear when the amplitude of the applied
field is at least 2000 V cm™!. With the values of the
parameters being close to the bifurcation points, the
applied electric field of small amplitude of 20 V cm™!
causes significant effects.

3. Discussion

We have investigated three mathematical models of
ion exchange in the membrane, described by nonlinear
differential equations. The solutions for different pa-
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rameters are in good agreement with the phenomena
observed in weak applied electric fields in living sys-
tems. From the experimental results and comparison of
the responses of live systems to the electric perturba-
tion with model results, we can gain insight into the
underlying mechanisms without resort to special field-
sensitive structures, because the inherent nonlinearity
of biological systems can result in a variety of re-
sponses.

As an illustration, the release of Ca?* from cerebral
tissue under the effect of electromagnetic fields {22], or
the intensification of ion flows driven by K/Na AT-
Pase [15-17] at optimum frequencies, beyond which
the effect is less expressed, correspond to the reso-
nance mechanism of the response described with the
first model. The term “resonant response” is widely
used by investigators with respect to electronic, nuclear
and other types of resonance. In our case, we speak of
a resonance at the organization level of the system. A
biological system can be arranged as a kind of a nonlin-
ear amplifier, such as is used in radioelectronics. A
comparison with this device may help to make clear
not only the resonant effect of an applied field but also
the informational character of its interaction with a
biological system. By analogy, a radio signal containing
some piece of information has a very low energy com-
pared with the energy of the power supply unit in a
radioelectronic device.

Another type of response, switching in a bistable
system, characterizes the effects of applied variable
electric field used in clinical medicine. Processes that
may arise in such situations are described by the sec-
ond model. In the case of a therapeutic effect, one
considers an organism to have two stable states, a
healthy and a pathological one, with different times of
direct and backward transitions. If such occurs, there is
an optimum frequency range for a field within which it
can switch an organism from the pathological to the
healthy state. Within this frequency range, no reverse
switching occurs. This also explains why an organism,
being initially healthy, does not switch to the pathologi-
cal state in an applied electromagnetic field having
such frequencies. As follows from our model, one may
expect that there are lower frequencies at which an
organism may alternatively be in either a healthy or a
pathological state. Perhaps this may account for the
effects of the extremely low frequency of technological
and natural environmental electromagnetic exposures
on humans.

The last type of nonlinear response treated here is
the response of a self-sustained oscillatory system.
Many authors believe that the rhythms of biological
systems of endogenous origin or rhythms imposed by
external exposures are very important for the normal
development of many vital processes [25]. The cessa-
tion of rhythmic activity or phase shift in the rhythms

may deteriorate the biological functions. The regula-
tion of the rhythmic activity by applied electric fields
can produce curative effects. To correct the phase of
the rhythms (for instance, impaired cardiac rhythms
[26]), the amplitude of the applied field has to be fairly
large. This corresponds to a situation where the field
acts far away from the bifurcation boundary. To initi-
ate oscillations in the vicinity of the bifurcation bound-
ary, the amplitude may be lower by a few orders of
magnitude.

The mathematical models discussed here allow one
to explain the effects of low-frequency and low-ampli-
tude fields observed in experiments and used in thera-
peutic practice,

To conclude, we should note that an important
problem is the capability of a biological system to
distinguish the periodic signals against the natural elec-
tromagnetic background noise. The preliminary data
obtained by us show that owing to the nonlinear ar-
rangement, the system can function as a nonlinear
filter detecting useful signal-containing information.
This aspect will be considered in a following paper.
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